Modelling the variation in larval dispersal of estuarine and coastal

ghost shrimp: Upogebia congeners in the Gulf of Cadiz

(Marine Ecology Progress Series 492: 153 – 168)

RFT Pires¹, M Pan¹, AMP Santos¹, Á Peliz², D Boutov³, A dos Santos¹

¹ Instituto Português do Mar e da Atmosfera (IPMA), ² Instituto Dom Luiz (IDL), ³Centro de Oceanografia (CO)

Introduction

Upogebia pusilla and U. deltaura (ghost shrimps), occupy different habitats in European coasts: estuaries and shelf areas, respectively. They present a short planktonic larval phase (3 weeks; 4 zoeal stages and 1 decapodid) and the adults construct burrows on sandy/muddy substrates.

Upogebia studies in the Gulf of Cadiz do not address the influence of oceanographic features on their dispersal and recruitment to parental populations.

Fig. 1 –a) SW Coast of Portugal and Gulf of Cadiz showing the sampling sites. b) Release areas and timeline of particle release experiments (red – *Upogebia pusilla*, green – *U. deltaura*)

Mean abundance [ln(x+1)]

Methods

Sampling was performed along the northwestern Gulf of Cadiz (August 2010) using Bongo nets and a LHPR sampler to study the vertical and spatial distribution of larvae.

Samples were preserved, biovolumes were determined and *Upogebia* larvae were identified and staged. The larval numbers were standardised to individuals per 10 m³.

The modelling consisted on Lagrangian experiments conducted with Ichthyop running over a ROMS 3D realistic long term high resolution simulation for the Gulf of Cadiz-Alboran Sea sub-basin.

Fig. 2 – Mean± SD of vertical abundances (In [x + 1] where x = ind. 10 m³) of all zoeal stages of *U. pusilla* (a) and *U. deltaura* (b).

Results & Discussion

- Different strategies of larval exportation: *U. pusilla* exported from estuarine areas, *U. deltaura* highly dispersed in the innershelf in relation to the natal sites;
- Occurrence at deeper layers assure a nearshore retention \rightarrow slower dispersal rates (*U. pusilla*);
- Occurrence at surface layers and distant from coast → higher cross-shore and alongshore dispersal (*U. deltaura*);

(a)	A1	A2	A3	A4	A5	A6
A1	92.7157	6.8558	0.0434	0.3742	0	0.0108
A2	Х	Х	Х	Х	Х	Х
A3	0.1097	0.0084	88.9373	1.3529	7.9011	1.6905
A4	Х	Х	Х	Х	Х	Х
A5	0	0	0.2102	0.0006	99.3731	0.4161
A6	Х	Х	Х	Х	Х	Х
(b)	A1	A2	A3	A4	A5	A6
A1	82.1100	14.5130	2.3584	1.0187	0	0
A2	Х	Х	Х	Х	Х	Х
A3	3.4051	0.0909	80.5482	7.4116	7.0130	1.5313
A4	Х	Х	Х	Х	Х	Х
A5	0	0	0.9423	0	93.2419	5.8158
A6	Х	Х	Х	Х	Х	Х

- Reduction of cross-shore transport → alongshore drift and vertical migrations reduce cross-shore movements favouring a nearshore retention;
- The cyclonic circulation and a wider shelf promote a high cross-shore transport
- U. deltaura last zoeal stages probably swept off the shelf by upwelling events
 → higher offshore dispersal, establishment of barriers to the alongshore
 transport (e.g. CSV).

Fig. 3 – Bongo 60 data. Abundances (ln [x + 1] where x = ind. 10 m−3) of ZI and ZIV stages for U. pusilla (Red,) and U. deltaura (Green). Fig. 4 – Connectivity between shelf areas (A1–A6) (% of particles emitted in one area that arrive at another or remain retained; X = areas where no particles were emitted) for (a) *U. pusilla* and (b) *U. deltaura*.

Conclusion

- Simulations represent the main features of the observed distributions;
- Application to larvae of other marine invertebrate organisms of coastal areas with short planktonic life \rightarrow dispersal prediction;
- Reference for future work about climatic change and the effects on larval dispersal and recruitment of coastal benthic populations.

References

- dos Santos A, Santos AMP, Conway DVP, Bartilotti C, Lourenço P, Queiroga H (2008); Diel vertical migration of decapod larvae in the Portuguese coastal upwelling ecosystem: implications for offshore transport. Mar Ecol Prog Ser 359: 171 183
- Faleiro F, Paula J, Narciso L (2012) Hot and salty: the temperature and salinity preferences of a temperate estuarine shrimp larva, Upogebia pusilla (Decapoda: Thalassinidea). Hydrobiologia 691 (1): 89 95
 Landeira JM, Lozano-Soldevilla F, Barton ED (2012) Mesoscale advection of Upogebia pusilla larvae through an upwelling filament in the Canaries Coastal Transition Zone (CTZ). Helgoland Mar Res; doi: 10.1007/s10152-011-0289-5
- Lett C, Verley P, Mullon C, Parada C, Brochier T, Penven P, Blake B (2008) A Lagrangian tool for modelling ichthyoplankton dynamics. Environ Modell Softw 23: 1210-1214
- Peliz Á, Boutov D, Cardoso RM, Delgado J, Soares PMM (2013) The Gulf of Cadiz-Alboran Sea sub-basin: Model setup, exchange and seasonal variability. Ocean Modelling 61: 49 67

